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• 2-beam Bloch wave intensities 
• Extension of Bloch wave approach to many beams 
• CBED patterns; dynamical fringes and polarity effects 
• Electron channeling and the s-state
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Part A: dynamical theory – Bloch wave approach

Part B: phonon scattering
• Observations: 

• diffuse scattering in diffraction, HAADF STEM imaging, Debye-Waller factor 
• Phenomenological adaptation of Bloch wave theory 
• HAADF STEM imaging; Mott scattering and frozen phonon model 
• Quantum mechanical model of phonon scattering
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Recap: 2-beam diffracted beam intensities

3

• From eqs 2.17 and 2.1 total wave function is:

(2.33)Ψ !r( ) = α j( )ψ j( ) !r( )
j
∑ = α j( )

j
∑ Cg

j( )

g
∑ exp 2π i

!
k j( ) + !g( ) ⋅ !r⎡

⎣
⎤
⎦

C0
1( ) = C0

2( ) = Cg
1( ) = −Cg

2( ) = 1
2

(2.37)

(2.40)Ig t( ) = 1
1+ ξg

2s2
sin2 π t 1

ξg
2 + s

2
⎛

⎝
⎜

⎞

⎠
⎟ I0 t( ) = 1− Ig t( )

• 2-beam approximation:
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Wave function intensities at exact Bragg

4

• Going back to wave function, from eqs 2.33 and 2.37 for exact Bragg can obtain:

(2.41)ψ 1( ) !r( ) = cos π !g ⋅ !r( )exp 2π i !k 1( ) + 0.5 !g( ) ⋅ !r⎡
⎣

⎤
⎦

ψ 2( ) !r( ) = isin π !g ⋅ !r( )exp 2π i !k 2( ) + 0.5 !g( ) ⋅ !r⎡
⎣

⎤
⎦ (2.42)

• Choosing coordinate  parallel to  with origin of  at an atomic site (also centre of 
symmetry), electron density in each Bloch wave is then:

x !g !r

ψ 1( ) !r( ) 2 = cos2 πgx( )

ψ 2( ) !r( ) 2 = sin2 πgx( )

(2.43)

(2.44)



Duncan Alexander EPFL-IPHYS-LSME. Electron-matter interactions: Elastic scattering (III)

Wave function intensities

5

• Type 1 wave channels down nuclei, Type 2 propagates between nuclei:

ψ 1( ) !r( ) 2 ψ 2( ) !r( ) 2
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Bloch wave analysis: multiple beams
• Extend Bloch wave model to many beams 

• Start from eq. 2.33:

6

Ψ !r( ) = α j( )ψ j( ) !r( )
j
∑ = α j( )

j
∑ Cg

j( )

g
∑ exp 2π i

!
k j( ) + !g( ) ⋅ !r⎡

⎣
⎤
⎦

• Many-beam theory eigenvalue equation (secular equation) is extension of 2-beam eq. 2.32:

1
2κ

−kt
2 U−g U−h !

Ug − kt + g( )2 Ug−h !

Uh Uh−g − kt + h( )2 !
! ! ! !

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

C0
j( )

Cg
j( )

Ch
j( )

!

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

= kz
j( ) −κ( )

C0
j( )

Cg
j( )

Ch
j( )

!

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

(3.1)
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Bloch wave analysis: multiple beams
• Eq. 3.1 is of the form:

7

AC j( ) = kz
j( ) −κ( )C j( ) (3.2)

• If  beams considered (including direct beam  = 0)  is an  matrixn !g A n × n( )

•  is Hermitian, since A Ug =U−g
*

• Eigenvalues are real and an  eigenvector matrix  matrix consisting of 
columns of complex eigenvectors  is unitary:

n × n( ) C
C j( )

C −1 =C † = !C * (3.3)

• There are  eigenvalues and  Bloch waves, each Bloch wave having  plane 
wave components

n n n
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Bloch wave analysis: multiple beams

8

• Written explicitly that is: Cg
i( )Cg

j( )* = δ ij
g
∑ (3.4)

and: Cg
j( )Ch

j( )* = δ gh
j
∑ (3.5)

• Hence eigenvectors form a complete orthonormal set

• Boundary condition of unit incident amplitude, such that                      or:
Cα = u

where column vector  has first element = 1 and all other elements are 0u

α j( )C 0
j( ) = 1

j
∑

(3.6)

• From eq. 3.3: α =C −1u = !C *u

and: α j( ) = C0
* j( ) (3.8)

(3.7)
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Bloch wave analysis: multiple beams

• For centrosymmetric crystals:  

-  is real and symmetric 

- all eigenvalues and eigenvectors are real 

-  is real and orthogonal ( ) 

-  eigenvalues give a dispersion surface 
with  branches:

A

C !C =C −1

n
n

9

Schematic dispersion surface for systematic row of 
 reflections for Cu. From Humphreys and Bithell.n
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Bloch wave analysis: multiple beams
• General case, amplitude of diffracted beam leaving bottom surface of crystal 

given as (eq. 2.24):

10

ϕg t( ) = α j( )

j
∑ Cg

j( )

g
∑ exp 2π ikz

j( )t( )
• Write amplitudes of all diffracted beams as column vector  where:ϕ

ϕ t( ) =

ϕ0 t( )
ϕg t( )
ϕh t( )
!

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

(3.9)

ϕ t( ) =C exp 2π ikz
j( )t( )⎡

⎣
⎤
⎦Dα

=C exp 2π ikz
j( )t( )⎡

⎣
⎤
⎦DC

−1u
(3.10)

• From 2.24 and 3.7:

• These Bloch wave matrices can be solved by computational methods (e.g. Kirkland book)
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Convergent beam electron diffraction
• Map beam intensities in function of  and !g s

11
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Convergent beam electron diffraction
• 2-beam illustration with fully-focused beam (from J.-P. Morniroli)

12

2α

2θB
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Convergent beam electron diffraction

• Diffracted beam CBED disc 
contains different ray paths 
that have sampled different 
excitation errors  

• Illustrate with Ewald sphere 
construction (diagram from 
J.-P. Morniroli)

s

13
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Bloch wave modelling and CBED
• Convergent beam electron diffraction (CBED) pattern simulations are probably 

the most common application of Bloch wave modelling, e.g. using JEMS 

• In 2-beam condition, incident parallel rays at different angles lead to sampling 
of different excitation errors in diffracted beam disc:

14
0

k0

k’

g

Simulations for Al with  excited for indicated 
!g 002 t

50 nm 100 nm

150 nm 200 nm
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Bloch wave modelling and CBED
• On zone axis, CBED patterns have complex patterns of fringes from the dynamical 

scattering, which can also be accurately simulated using Bloch wave modelling 

• Case of Si on [0 0 1] zone axis:

15

Experiment Simulation: 200 kV;  = 126nm; 
4.1 mrad convergence semi-angle

t
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CBED and polarity
• The difference in Bloch wave propagation down different atomic columns can be 

exploited to measure crystal polarity from CBED patterns 

• Common use: identifying polarity in wurtzite crystal structure (P63mc) – GaN, ZnO, …

16

JEMS simulation:  GaN [1 -1 0 0] ZA

t = 100 nm

t = 150 nm

t = 200 nm

t = 250 nm

0 0 0 –2       0 0 0 0        0 0 0 2

GaN atomic structure along [1 -1 0 0]:

c

b

a
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Electron channeling
• Already seen the relation of Bloch wave electron density to atomic columns for the 

2-beam condition with  Bloch waves 

• “Channeling” of Bloch waves down atomic columns even more significant in high 
resolution imaging of crystals on low index zone axes 

• Applies to both plane wave (HRTEM) and focused probe (scanning TEM) illumination

n = 2

17

• Schematic illustration:

From: Findlay et al. Microscopy (2017) 3–14
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1s-state Bloch wave
• Zone axis condition: wave function of propagating e– beam can be expressed in 

form of Bloch wave eigenstates with the potential being formed by the 2D projection 
of the atomic column 

• Catalogued by analogy to atomic orbitals (1s, 2p, 2s, …)

18

• Significance formalised into “1s-state approximation”

From: Wouters et al. 
PRB 100 (2019) 184106 
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s-state Bloch wave model
• Assume atomic columns parallel to beam and well-separated 

• Van Dyck and Op de Beeck introduced a specifically-conceived Bloch wave approach 

• Adapted for HRTEM by Geuens and Van Dyck

19

• Precept: wave function at exit surface mainly depends on 
projected structure 

• Atomic column acts as guide or channel for electrons that 
can scatter dynamically without leaving column

Van Dyck and Op de Beeck Ultramicroscopy 64 (1996) 99–107 
Geuens and Van Dyck Ultramicroscopy 93 (2002) 179–198
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s-state Bloch wave model
• For propagation along -axis can consider -axis as time axis:z z

20

 t = mz hk

 ĤΨ !r⊥ ,t( ) = i! ∂Ψ
"r⊥ ,t( )
∂t

• Recall Schrödinger eq. 1.8, now use coordinate  in the plane perpendicular to :!r⊥ z

 Ĥ = p̂2

2m
+V !r⊥ ,t( ) = − !

2

2m
∇ "r⊥
2 − eφ !r⊥ ,t( )where:

(3.11)

(3.12)

(3.13)

where:

 ∂
∂z

Ψ !r⊥ ,t( ) = i
4π k

∇ !r⊥
2 +V !r⊥ , z( )⎡⎣ ⎤⎦Ψ

!r⊥ ,t( )

V !r⊥ , z( ) = 2me
!2

φ !r⊥ , z( )

• Then obtain: (3.14)

(3.15)



Duncan Alexander EPFL-IPHYS-LSME. Electron-matter interactions: Elastic scattering (III)

s-state Bloch wave model
• After considering only non-overlapping 1s-type bound states which are very localised to 

atomic cores, obtain:

21

Ψ !r⊥ , z( ) = 1+ CjΦ j
!r⊥ −
!r⊥

j( )( )
j
∑ exp −iπ

Ej

eE0
kz

⎛
⎝⎜

⎞
⎠⎟
−1

⎡

⎣
⎢

⎤

⎦
⎥ (3.16)

where each column has one eigenfunction Φ j

• Therefore each column acts as a channel in which wave function oscillates periodically 
with depth. Periodicity proportional to atomic number Z

From: Xu et al. 
Ultramicrosc. 
110 (2010) 
535–542 
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1s-state and STEM imaging

22

• For atomic resolution STEM with a (sub-)Å convergent probe, the 1s state is the most 
relevant, having electron density amplitude strongly peaked on centre of atomic column 

• At first approximation, high angle annular dark-field (HAADF) and annular bright field (ABF) 
images are consequence of the scattering of this 1s-state to their respective detectors

From: Hovden et al. PRB 86 (2012) 195415 From: Wouters et al. PRB 100 (2019) 184106 



Phonon scattering

23
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Debye-Waller factor
• Modification of structure factor term to account for observed decrease in scattering 

efficiency from thermal vibrations of atoms 

•  is temperature-dependent structure factor related to  and Debye-Waller  factor by:Fg
T Fg M

24

 Fg
T = Fg exp −M( )

 M = 8π 2 u( )2 g
2

⎛
⎝⎜

⎞
⎠⎟
2

= B g
2

⎛
⎝⎜

⎞
⎠⎟
2

where  is the mean-square displacement of the atomu( )2

• Because of  term important for higher order reflections, e.g. for Au:g2

•  is the temperature factor, values given in International Tables for X-ray CrystallographyB

(3.17)

(3.18)

F555
RT ≈ 0.5F555

• Concomitant effect on ξg
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Diffuse scattering in diffraction
• Observe diffuse intensity between the sharp diffracted beams of selected area DPs 

• When this intensity forms diffuse lines: termed “Kikuchi lines”

25

Si on [0 0 1] ZA Si near a 2-beam condition
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HAADF STEM imaging
• Integrate intensity from electrons scattered to high angles, beyond Bragg-diffracted beams 

• Imaging is incoherent in nature, e.g. camera-like properties of contrast and focus

26

LaVO3 thin film on SrTiO3 Edge of GaAs nanowire

1 nm
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Absorption of 2-beam intensity

27

• Plot integrated line profiles of  and  
of cleaved Si wedge at Bragg condition  

• Significant damping of intensities i.e. “absorption” 

• Not accounted in model with:

I0 t( ) Ig t( )
→

Experiment

Bright-field Dark-field

Ig t( ) = sin2 π t ξg( )
I0 t( ) = 1− Ig t( )

Model
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“Thermal diffuse scattering”
• Diffuse intensity between diffracted beams originally ascribed to “thermal diffuse 

scattering” (TDS) 

• This is conceived as incoherent scattering caused by thermal vibrations in the crystal 
lattice – i.e. phonons 

• The small, random displacements of atoms/atomic nuclei caused by these vibrations 
are considered to scatter the electron beam/wave function incoherently 

• The Deybe-Waller factor and TDS are two sides of the same coin: the loss of coherent 
elastic scattering intensity is from its redistribution into incoherent diffuse intensity 

• As a first approximation, the HAADF STEM image is formed from incoherent TDS of the 
highly localised 1s-state Bloch wave to the high angle annular detector 

• Correlated to “absorption” of Bragg-diffracted beams, from depletion of Bloch waves 
as their electron density is incoherently scattered by phonon excitations

28
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Single scattering cross-sections
• For single scattering, Amali and Rez derived the scattering cross-section for TDS as:

29

 I q( ) = dσ
dΩ

= γ 2

4π 4a0
2

Z − fx
!q( )⎡⎣ ⎤⎦

2

q4
1− exp − Mq

2

2π 2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

From: Rez Microsc. Microanal. 7 (2001) 356–362

(3.18)

• Plot of scattering cross-sections vs 
scattering angle (log scale for ) 

- Short dashed line: Rutherford cross-section 

- Solid line: Mott scattering 

- Long dashed line: thermal diffuse scattering

σ

• Indication of importance of TDS for 
HAADF STEM
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Bloch wave model with “absorption”
• Incoherent scattering removes intensity from diffracted beams: termed 

“absorption” or depletion 

• Can treat phenomenologically by incorporating imaginary potential into 
equations 2.14–3.10:

30

 φ !r( )→φ !r( )+ i ′φ !r( )
 Vg →Vg + i ′Vg
 Ug →Ug + i ′Ug

• The wave vectors also become complex:
!
k j( ) →

!
k j( ) − i !u j( )

⟹ each Bloch wave physically attenuated as it propagates through the crystal

(3.19)

(3.20)
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Bloch wave model with “absorption”

31

Ψ !r( ) = α j( )

j
∑ Cg

j( )

g
∑ exp 2π i

!
k j( ) + !g( ) ⋅ !r⎡

⎣
⎤
⎦exp −2π !u j( ) ⋅ !r( )

• Equation 2.33 becomes:

•  replaced by exponentially attenuated amplitude :α j( ) α j( ) z( )

α j( ) z( ) =α j( ) exp −2πu j( )z( )
• Setting equations 3.19 in equations 3.1 and 3.2 gives a complex general matrix that 

can be solved by diagonalization using computer programs.

(3.21)

(3.22)
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2-beam Bloch waves with “absorption”

32

• At exact Bragg condition, for 2-beam 
approximation can be shown:

u 1( ) = 1
2κ z

′U0 + ′Ug( )

u 2( ) = 1
2κ z

′U0 − ′Ug( )
• Mean absorption length:

′ξ0 =κ z ′U0

• Anomalous absorption length:

′ξg =κ z ′Ug

Type 1 Type 1

(3.23)

(3.24)

(3.25)

(3.26)
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2-beam Bloch waves with “absorption”

33

• Include  and  in modelling of thickness fringes 
at the exact Bragg condition 

• Use “common” values of: 

• Experimental data and model fit very well!

′ξ0 ′ξg

′ξ0 = 10ξg ′ξg = 15ξg

Experiment

Model with absorption

Bright-field Dark-field
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Frozen phonon model

• The phenomenological absorption approach is insufficient for: 

- simulating the diffuse contribution of phonon scattering to diffraction patterns 

- simulating HAADF STEM images where intensity primarily from incoherent 
phonon scattering of the 1s-state Bloch wave. 

• To solve this problem, Loane and Silcox introduced the “frozen phonon model”: 
Acta Cryst. A47 (1991) 267–278. 

• Models elastic scattering from atoms displaced from their equilibrium positions 
by thermal vibrations. 

• Popular and relatively efficient simulation method, which can give a very good 
match to experimental data, e.g.: QSTEM, Dr Probe, abTEM… 

34
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Frozen phonon model
• Concept: fast electron traverses crystal much faster than 

oscillation period of the atom 

• The “electron sees a snapshot of the atom frozen midvibration”.  

• Each electron “sees” a different configuration. The contributions 
of different electrons are summed incoherently in the detector 
plane. 

• In practice this is implemented by a Monte Carlo integration.

35

• The scattering is determined by propagating the incident wave function across the 
atomic configuration using a multi-slice method. 

• Typically uses the Einstein model of independent simple harmonic oscillators to 
simulate the displaced atoms. 

• Fully elastic approach – is this physically correct?
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QM model of phonon excitation
• Les Allen et al. introduced quantum mechanically correct model of phonon scattering: 

Forbes et al. PRB 82 (2010) 104103 

• Introduces the QM exchange of phonon excitation into the Schrödinger equation

36

• Schrödinger equation modified to:

 − !
2

2m
∇ "r
2 + Hc

!τ( )+ ′H !r , !τ( )⎡

⎣
⎢

⎤

⎦
⎥Ψ
!r , !τ( ) = E !r , !τ( )

 is total energy of systemE
  is coordinate of incident e–!r
  is set of all position vectors referring to particles in the crystal!τ = !r1,...,

!rN{ }

(3.27)

 is the Hamiltonian for all the crystal particles Hc

 describes the interaction of the incident e– with the crystal particles′H
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QM model of phonon excitation

37

•  expanded in terms of eigenfunctions of the crystal Hamiltonian Ψ !r , !τ( ) Hc τ( )

Ψ !r , !τ( ) = ψ m
!r( )am

!τ( )
m
∑

Hc
!τ( )am

!τ( ) = εmam
!τ( )

: initial state of crystal (not necessarily ground state)a0
!τ( )

 ( ):ψ m
!r( ) m ≠ 0

 in eq. 3.28: fast e– after elastic scatteringψ 0
!r( )

(3.28)

where the normalised wave function  represents the th stationary state of 
the crystal (of energy ) and satisfies the equation:

am
!τ( ) m

εm

(3.29)

describes the fast e– after transition in which crystal is 
changed from  to a0

!τ( ) am
!τ( )
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QM model of phonon excitation

38

• Energy of e– in state  is given by:ψ 0
!r( )

 E0 = E − ε0

 Em = E − εm

• For inelastic scattering, the energy associated with , i.e. after the inelastic 
scattering, is:

ψ m
!r( )

• Therefore energy-loss of incident e– after exciting crystal from initial to th state is: m

 Eloss = E0 − Em = εm − ε0

(3.30)

(3.31)

(3.32)
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QM model of phonon excitation

39

• Assume nuclear and electronic subsystems are decoupled, and that 
electronic subsystem is not excited, giving this factorisation:

am
!τ( ) = b !τ e( )am !τ n( )

• Then propose ansatz for the wave function of the system:

Ψ !r , !τ( ) = b !τ e( )a !τ n( )ϕ !r , !τ n( )

(3.33)

Ψ !r , !τ( ) = b !τ e( ) ψ m
!r( )am

!τ n( )
m
∑giving: (3.34)

(3.35)

where  is associated with the nuclear subsystem and  with the fast e–a !τ n( ) ϕ !r , !τ n( )
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QM model of phonon excitation

40

• Leads to equation:

 − !
2

2m
∇ !r
2ϕ !r , !τ n( )+ ′!H !r , !τ n( )ϕ !r , !τ n( ) = E0ϕ !r , !τ n( )

where: ′!H "r , !τ n( ) = b* !τ e( ) ′H !r , !τ( )∫ b !τ e( )d !τ e

(3.36)

(3.37)

• Equation 3.36 can be solved using the multislice method for a set of nuclear coordinates !τ n

• Following this, the probability distribution of fast e– modelled by the quantum 
mechanical average over nuclear coordinates is derived as:

I !r( ) = I !r⊥ , z( ) = ϕ !r⊥ , z,
!τ n( ) 2 a0 !τ n( )∫

2
d !τ n (3.38)

• Integral can be solved via a Monte Carlo calculation, where  acts as a probability 
distribution and  are obtained via the multislice method

a0
!τ n( ) 2

ϕ !r⊥ , z,
!τ n( )
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QM model of phonon excitation

41

• If crystal modelled as set of independent harmonic oscillators, th atom has probability 
distribution: 

j

P !τ n
j( )( ) = 1

2π u j( )( )2
exp

τ n
j( ) −
!
R j( )( )2

u j( )( )2
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

• Measurement then modelled as incoherent sum of e– scattered from different initial states:

I !r⊥ , z( ) = I j
!r⊥ , z( )

j
∑ = ϕ !r⊥ , z,

!τ n( ) 2 ai
!τ n( ) 2

j
∑

⎧
⎨
⎩

⎫
⎬
⎭

∫ d !τ n

= ϕ !r⊥ , z,
!τ n( ) 2 P !τ n( )∫ d !τ n

• Need to consider many electrons, where electrons incident at different times during a 
measurement scatter from different initial crystal states, from a thermal statistical ensemble

(3.39)

(3.38)

where:  is the equilibrium position of the atom; 
            is the mean-squared displacement of the atom (see Debye-Waller slide)

!
R j( )

u j( )( )2
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QM model of phonon excitation

42

• With this model elastic and inelastic phonon scattered contributions can be separated 

• Applied to simulating plane wave illumination diffraction pattern of 20 nm thick SrTiO3 

• (a): full intensity; (b) elastically-scattered e– only; (c) inelastically-scattered e–
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• With this model elastic and inelastic phonon scattered contributions can be separated 

• Applied to simulating CBED pattern of 6 nm thick SrTiO3 

• (a): full intensity; (b) elastically-scattered e– only; (c) inelastically-scattered e–

• Used to understand anomalous HAADF contrast in: https://arxiv.org/abs/2401.08798 

https://arxiv.org/abs/2401.08798
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Les J. Allen et al. Ultramicroscopy 151 (2015) 11–22

• Term-by-term analysis shows that the frozen 
phonon and QM models are actually equivalent 
for the end result. 

• However, the fully elastic approach of the frozen 
phonon is physically incorrect. This has now 
been proven using ultra-low-loss electron 
energy-loss spectroscopy! TDS corresponds to 
a phonon excitation with . 

• The QM model that correctly represents the 
inelastic nature of phonon scattering is available 
for use in the μSTEM simulation software, which 
can simulate diffraction patterns, HRTEM and 
STEM images, EDXS, EELS…

ΔE

PACBED HAADF STEM

• V6 including plasmon scattering: https://github.com/ju-bar?tab=repositories

https://github.com/ju-bar?tab=repositories


Duncan Alexander EPFL-IPHYS-LSME. Electron-matter interactions: Elastic scattering (III)

Bibliography
• Earl J. Kirkland, “Advanced Computing in Electron Microscopy”, Springer. 

https://link.springer.com/book/10.1007/978-1-4419-6533-2 

• A. Amali and P. Rez, “Theory of Lattice Resolution in High-angle Annular Dark-field 
images” – derivation of single-scattering cross section for TDS using Bose-Einstein model 

• S. J. Pennycook and D. E. Jesson, “High-Resolution Incoherent Imaging of Crystals” 
– Bloch wave analysis showing 1s-state dependence of HAADF contrast  

• D. Van Dyck and M. Op de Beeck, “A simple intuitive theory for electron diffraction” 
– 1s-state model 

• R. F. Loane et al., “Thermal Vibrations in Convergent-Beam Electron Diffraction” 
– Introduction of the frozen phonon model 

• B. D. Forbes et al., “Quantum mechanical model for phonon excitation in electron 
diffraction and imaging using a Born-Oppenheimer approximation” and L.J. Allen et al. 
“Modelling the inelastic scattering of fast electrons” – QM model used in μSTEM

45

https://link.springer.com/book/10.1007/978-1-4419-6533-2

